s ] 2 9 Ju n 20 12 Space - time resolved simulation of femtosecond nonlinear light - matter interactions using a holistic quantum atomic model : Application to near - threshold harmonics
نویسنده
چکیده
We introduce a new computational approach for femtosecond pulse propagation in the transparency region of gases that permits full resolution in three space dimensions plus time while fully incorporating quantum coherent effects such as high-harmonic generation and strong-field ionization in a holistic fashion. This is achieved by utilizing a onedimensional model atom with a delta-function potential which allows for a closed-form solution for the nonlinear optical response due to ground-state to continuum transitions. It side-steps evaluation of the wave function, and offers more than one hundred-fold reduction in computation time in comparison to direct solution of the atomic Schrödinger equation. To illustrate the capability of our new computational approach, we apply it to the example of near-threshold harmonic generation in Xenon, and we also present a qualitative comparison between our model and results from an in-house experiment on extreme ultraviolet generation in a femtosecond enhancement cavity. © 2012 Optical Society of America OCIS codes: (320.0320) Ultrafast optics; (320.7110) Ultrafast Nonlinear Optics; (190.4610) Multiharmonic generation; (190.5940) Self-action effects; (320.2250) Femtosecond phenomena; References and links 1. A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007). 2. M. Lewenstein, P. Balcou, M. Y. Ivanov, A. L’Huillier, and P. B. Corkum, “Theory of high harmonics generation by low-frequency laser fields,” Phys. Rev. A 49, 2117–2132 (1994). 3. L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J. Wolf, “Ultrashort filaments of light in weakly ionized optically transparent media,” Rep. Prog. Phys. 70, 1633–1713 (2007). 4. M. Gaarde, J. Tate, and K. Schafer, “Macroscopic aspects of attosecond pulse generation,” J. Phys. B: At. Mol. Opt. Phys. 41, 132001 (2008). 5. M. Nurhuda, A. Suda, and K. Midorikawa, “Generalization of the Kerr effect for high intensity, ultrashort laser pulses,” New J. Phys. 10, 053006 (2008). 6. E. A. Volkova, A. M. Popov, and O. V. Tikhonova, “Nonlinear polarization response of an atomic gas medium in the field of a high-intensity femtosecond laser pulse,” JETP Lett. 94, 519–524 (2011). 7. I. Christov, “Propagation of ultrashort pulses in gaseous medium:breakdown of the quasistatic approximation,” Opt. Express 6, 34–39 (2000). 8. E. Lorin, S. Chelkowski, and A. D. Bandrauk, “The WASP model: A Micro-Macro system of Wave-SchrödingerPlasma equations for filamentation,” Commun. Comput. Phys. 9, 406–440 (2011). 9. Q. Su and J. Eberly, “Model atom for multiphoton physics,” Phys. Rev. A 44, 5997–6008 (1991). 10. G. P. Arrighini and M. Gavarini, “Ionization of a model atom by strong and superstrong electric fields,” Lett. Nuovo Cimento 33, 353–358 (1982). 11. W. Elberfeld and M. Kleber, “Tunneling from an ultrathin quantum well in a strong electrostatic field: A comparison of different methods,” Z. Phys. B: Cond. Matt. 73, 23–32 (1988). 12. R. M. Cavalcanti, P. Giacconi, and R. Soldati, “Decay in a uniform field: an exactly solvable model,” J. Phys. A: Math. Gen. 36, 12065–12080 (2003). 13. H. Uncu, H. Erkol, E. Demiralp, and H. Beker, “Solutions of the Schrödinger equation for dirac delta decorated linear potential,” C. Eur. J. Phys. 3, 303–323 (2005). 14. G. Álvarez and B. Sundaram, “Perturbation theory for the stark effect in a double quantum well,” J. Phys. A: Math. Gen. 37, 9735–9748 (2004). 15. V. M. Villalba and L. A. González-Dı́az, “Particle resonance in the dirac equation in the presence of a delta interaction and a perturbative hyperbolic potential,” Eur. Phys. J. C 61, 519–525 (2009). 16. S. Geltman, “Ionisation dynamics of a model atom in an electrostatic field,” J. Phys. B: At. Mol. Phys. 11, 3323–3337 (1978). 17. G. V. Dunne and C. S. Gauthier, “Simple soluble molecular ionization model,” Phys. Rev. A 69, 053409 (2004). 18. Q. Su, B. P. Irving, C. W. Johnson, and J. H. Eberly, “Stabilization of a one-dimensional short-range model atom in intense laser fields,” J. Phys. B: At. Mol. Opt. 29, 5755–5764 (1996). 19. T. Dziubak and J. Matulewski, “Stabilization of one-dimensional soft-core and singular model atoms,” Eur. Phys. J. D 59, 321–327 (2010). 20. A. Sanpera, Q. Su, and L. Roso-Franco, “Ionization suppression in a very-short-range potential,” Phys. Rev. A 47, 2312–2318 (1993). 21. S. Geltman, “Short-pulse model-atom studies of ionization in intense laser fields,” J. Phys. B At. Mol. Opt. 27, 1497–1514 (1994). 22. Z. X. Zhao, B. D. Esry, and C. D. Lin, “Boundary-free scaling calculation of the time-dependent Schrödinger equation for laser-atom interactions,” Phys. Rev. A 65, 023402 (2002). 23. A. Teleki, E. M. Wright, and M. Kolesik, “Microscopic model for the higher-order nonlinearity in optical filaments,” Phys. Rev. A 82, 065801 (2010). 24. J. M. Brown, E. M. Wright, J. V. Moloney, and M. Kolesik, “On the relative roles of higher-order nonlinearity and ionization in ultrafast light-matter interactions,” Opt. Lett. 37, 1604–1606 (2012). 25. J. Brown, A. Lotti, A. Teleki, and M. Kolesik, “Exactly solvable model for non-linear light-matter interaction in an arbitrary time-dependent field,” Phys. Rev. A 84, 063424 (2011). 26. J. Lee, D. R. Carlson, and R. J. Jones, “Optimizing intracavity high harmonic generation for xuv fs frequency combs,” Opt. Express 19, 23315–23326 (2011). 27. M. Kolesik and J. V. Moloney, “Nonlinear optical pulse propagation simulation: From Maxwell’s to unidirectional equations,” Phys. Rev. E 70, 036604 (2004). 28. A. Bideau-Mehu, Y. Guern, R. Abjean, and A. Johannin-Gilles, “Measurement of refractive indices of neon, argon, krypton and xenon in the 253.7—140.4 nm wavelength range. Dispersion relations and estimated oscillator strengths of the resonance lines,” J. Quant. Spect. Rad. Transfer 25, 395–402 (1981). 29. P. B. Corkum, “Plasma perspective on strong field multiphoton ionization,” Phys. Rev. Lett 71, 1994–1997 (1993). 30. K. J. Schafer, B. Yang, L. F. DiMauro, and K. C. Kulander, “Above threshold ionization beyond the high harmonic cutoff,” Phys. Rev. Lett. 70, 1599–1602 (1993). 31. F. Schapper, M. Holler, T. Auguste, A. Zaı̈r, M. Weger, P. Salières, L. Gallmann, and U. Keller, “Spatial fingerprint of quantum path interferences in high order harmonic generation,” Opt. Express 18, 2987–2994 (2010). 32. S. M. Teichmann, D. R. Austin, P. Bates, S. Cousin, A. Grün, M. Clerici, A. Lotti, D. Faccio, P. DiTrapani, A. Couairon, and J. Biegert, “Trajectory interferences in a semi-infinite gas cell” Laser Phys. Lett. 9, 207–211 (2012). 33. A. L’Huillier, K.J. Schafer, and K.C. Kulander, “High-order harmonic generation in Xenon at 1064 nm: The role of phase matching,” Phys. Rev. Lett. 66, 2200–2203 (1991). 34. P. Salières, A. L’Huillier, and M. Lewenstein, “Coherence control of high-order harmonics,” Phys. Rev. Lett. 74 3776–3779 (1995). 35. E. Constant, D. Garzella, P. Breger, E. Mvel, C. Dorrer, C. Le Blanc, F. Sali, and P. Agostini, “Optimizing high harmonic generation in absorbing gases: Model and experiment,” Phys. Rev. Lett. 82, 1668–1671 (1999). 36. R. J. Jones, K. D. Moll, M. J. Thorpe, and J. Ye, “Phase-coherent frequency combs in the vacuum ultraviolet via high-harmonic generation inside a femtosecond enhancement cavity,” Phys. Rev. Lett. 94, 193201 (2005). 37. C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hansch, “A frequency comb in the extreme ultraviolet,” Nature 436, 234–237 (2005). 38. D. R. Carlson, J. Lee, J. Mongelli, E. M. Wright, and R. J. Jones, “Intracavity ionization and pulse formation in femtosecond enhancement cavities,” Optics Letters 36, 2991–2993 (2011).
منابع مشابه
Space-time resolved simulation of femtosecond nonlinear light-matter interactions using a holistic quantum atomic model: application to near-threshold harmonics.
We introduce a new computational approach for femtosecond pulse propagation in the transparency region of gases that permits full resolution in three space dimensions plus time while fully incorporating quantum coherent effects such as high-harmonic generation and strong-field ionization in a holistic fashion. This is achieved by utilizing a one-dimensional model atom with a delta-function pote...
متن کاملGeneration of High Order Harmonics from H2+ Molecule Ion by Using Homogenous and Inhomogeneous Laser Fields
We solved one dimensional Schrodinger equation in a H2+ molecular environment by using 3 femtosecond homogeneous and nonhomogeneous laser fields. In homogeneous case, we found out that larger inter nuclear distances result in earlier ionization and also more instability in the wave packet. We deducted that the more the instability is, the more modulated the power spectrum will be. So, by choosi...
متن کاملModeling Time Resolved Light Propagation Inside a Realistic Human Head Model
Background: Near infrared spectroscopy imaging is one of the new techniques used for investigating structural and functionality of different body tissues. This is done by injecting light into the medium and measuring the photon intensity at the surface of the tissue.Method: In this paper the different medical applications, various imaging and simulation techniques of NIRS imaging is described. ...
متن کاملOn the relative roles of higher-order nonlinearity and ionization in ultrafast light-matter interactions.
Far off-resonant ultrafast and nonlinear light-matter interactions are studied using a one-dimensional atomic model. Results from a pump-probe diagnostic reveal that any higher-order nonlinear refraction is masked by ionization-induced defocusing before it becomes significant. On the other hand, we show that signatures of a higher-order nonlinearity may still be manifest via low-order harmonics...
متن کاملCoherent phase-matched VUV generation by field-controlled bound states
The generation of high-order harmonics1 and attosecond pulses2 at ultrahigh repetition rates (>1 MHz) promises to revolutionize ultrafast spectroscopy. Such vacuum ultraviolet (VUV) and soft X-ray sources could potentially be driven directly by plasmonic enhancement of laser pulses from a femtosecond oscillator3,4, but recent experiments suggest that the VUV signal is actually dominated by inco...
متن کامل